Conditional Bernoulli Mixtures for Multi-label Classification

نویسندگان

  • Cheng Li
  • Bingyu Wang
  • Virgil Pavlu
  • Javed A. Aslam
چکیده

Multi-label classification is an important machine learning task wherein one assigns a subset of candidate labels to an object. In this paper, we propose a new multi-label classification method based on Conditional Bernoulli Mixtures. Our proposed method has several attractive properties: it captures label dependencies; it reduces the multi-label problem to several standard binary and multi-class problems; it subsumes the classic independent binary prediction and power-set subset prediction methods as special cases; and it exhibits accuracy and/or computational complexity advantages over existing approaches. We demonstrate two implementations of our method using logistic regressions and gradient boosted trees, together with a simple training procedure based on Expectation Maximization. We further derive an efficient prediction procedure based on dynamic programming, thus avoiding the cost of examining an exponential number of potential label subsets. Experimental results show the effectiveness of the proposed method against competitive alternatives on benchmark datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixtures-of-Experts Framework for Multi-Label Classification

We develop a novel probabilistic approach for multi-label classification that is based on the mixtures-of-experts architecture combined with recently introduced conditional tree-structured Bayesian networks. Our approach captures different input-output relations from multi-label data using the efficient tree-structured classifiers, while the mixtures-of-experts architecture aims to compensate f...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora

We propose Dirichlet-Bernoulli Alignment (DBA), a generative model for corpora in which each pattern (e.g., a document) contains a set of instances (e.g., paragraphs in the document) and belongs to multiple classes. By casting predefined classes as latent Dirichlet variables (i.e., instance level labels), and modeling the multi-label of each pattern as Bernoulli variables conditioned on the wei...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Multi-Label Classification Using Conditional Dependency Networks

In this paper, we tackle the challenges of multilabel classification by developing a general conditional dependency network model. The proposed model is a cyclic directed graphical model, which provides an intuitive representation for the dependencies among multiple label variables, and a well integrated framework for efficient model training using binary classifiers and label predictions using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016